Acta Cryst. (1969). B25, 2046

X-ray Crystal Structure Analysis of Bis(pyridine N-oxide)copper(II) Nitrate, Cu(C₅H₅NO)₂(NO₃)₂

BY S. ŠĆAVNIČAR AND B. MATKOVIĆ Institute 'Ruder Boškovic', Zagreb, Yugoslavia

(Received 20 December 1968)

The crystals of $Cu(C_5H_5NO)_2(NO_3)_2$ are monoclinic with $a = 11\cdot820$, $b = 14\cdot862$, $c = 8\cdot005$ Å, $\beta = 95\cdot50^\circ$, space group $P2_1/n$, with four formula units in the unit cell. A three-dimensional X-ray crystal structure analysis has shown that the compound is a dimeric complex, formula $[Cu(C_5H_5NO)_2(NO_3)_2]_2$, composed of two centrosymmetrically related monomers. Two copper atoms within the complex are joined by two bridging oxygen atoms (from C_5H_5NO groups) with a Cu–Cu distance of $3\cdot458$ Å. Two nitrate groups, acting as monodentate ligands, and two oxygen atoms (from two C_5H_5NO groups) are bonded to each copper atom by short (from $1\cdot951$ to $1\cdot968$ Å) and nearly coplanar bonds. The fifth Cu–O bond is long ($2\cdot439$ Å); it's oxygen atom belongs to the C_5H_5NO group which is connected with the other copper atom (from the dimer) by short bonds. Thus each copper atom has a distorted tetragonal pyramidal environment of five oxygen atoms, and the dimeric complex contains two pyramidal polyhedra with one common pyramidal edge. The distances in the nitrate and pyridine *N*-oxide groupings do not deviate significantly from the known values. The shortest intermolecular distances correspond to van der Waals interactions.

Introduction

Bis(pyridine N-oxide)copper(II) nitrate,

$Cu(C_5H_5NO)_2(NO_3)_2$,

was isolated and characterized by infrared spectra, magnetic susceptibility and molecular conductance measurements by Quagliano, Fujita, Franz, Phillips, Walmsley & Tyree (1961). On the basis of the NO (from C_5H_5NO) frequency band at 1205 cm⁻¹ and the strong absorption bands at 1292 and 1019 cm⁻¹ it was concluded that the pyridine N-oxide and the nitrate ligand made up the first coordination sphere of the copper atom. This is in agreement with a stiochiometric composition of the molecule, the usual coordination number of the copper(II) ion, and the property of pyridine N-oxide to coordinate only through an oxygen atom (since the oxygen atom is a negative end of a dipole). The conclusion of Quagliano et al. (1961) was confirmed by the present work of X-ray crystal structure analysis. Besides this some new, unpredictable, properties of the structure were revealed which may be of interest in a study of the structural chemistry of transition metal complexes of pyridine N-oxide; these include, among others, the geometry of coordination of the oxygen donor ligand, its role as a bridging ligand, the 'deficient' coordination number of copper(II) in the presence of two unattached oxygen atoms per NO₃ group and the absence of metal-metal interactions. A starting hypothesis of an octahedral coordination for the copper(II) atom with two nitrate groups, acting as bidentate ligands in the equatorial plane, and two pyridine N-oxide groups in axial positions had to be abandoned.

The main features of the crystal structure of bis(pyridine N-oxide) copper(II) nitrate, with some interatomic distances and angles within the copper polyhedron, were described by Šćavničar & Matković (1967). At that time the structure was solved by least-squares refinement with isotropic temperature factors. About 220 reflexions (mostly weak, slightly above film ground and the strongest which indicated that extinction corrections were necessary) were omitted in these calculations. The present paper describes in detail the structure derived from a three-dimensional anisotropic refinement with all (collected) reflexions and corrections for secondary extinction.

Experimental

Crystals of Cu(C₅H₅NO)₂(NO₃)₂ were prepared by R.L.Carlin,* and kindly supplied to D.Grdenić.† Intensities of X-ray reflexions were recorded photographically by the equi-inclination Weissenberg method (Nifiltered Cu K α radiation) from a crystal mounted about the *b* axis (layers h0l to h7l inclusive) and about the *a* and *c* axes (zero layer reflexions only). Of 1917 attainable symmetry-independent reflexions, 1359 were measured with an optical densitometer, another 200 (slightly above background) were estimated visually and 358 reflexions were unobserved. Lorentz and polarization, but not absorption corrections were applied. The calculated absorption coefficient, μ , of 27.5 cm⁻¹, and

^{*} Professor R.L.Carlin, Chemistry Department, Brown University, Providence 12, Rhode Island, U.S.A.

[†] Professor D.Grdenić, Department of General and Inorganic Chemistry, Faculty of Science, Zagreb, Yugoslavia.

the dimensions of crystals used indicated that μs was limited to between 0.8 and 1.0, where s was the maximum path length of an X-ray within the crystal. Unit-cell dimensions were obtained from the oscillation photographs taken with Cu K α radiation.

Crystal data

The well developed crystals are bounded by the faces of the $\{010\}$, $\{110\}$, $\{021\}$, $\{011\}$ and $\{\overline{1}01\}$ forms of the monoclinic holosymmetric class. The crystals are transparent and of an intense emerald green colour. They are thick plate-like crystals of [010] habit slightly elongated in the *a*-axis direction.

M.W. for formula unit $Cu(C_5H_5NO)_2(NO_3)_2 = 377.76$,

Monoclinic,

 $a = 11.820 \pm 0.005, b = 14.862 \pm 0.01,$

$$c = 8.005 \pm 0.005 \text{ Å}; \beta = 95.5 \pm 0.2^{\circ}$$

 $V = 1399.6 \text{ Å}^3, Z = 4,$

 $D_c = 1.792$ and $D_m = 1.78$ g.cm⁻³ (determined by the flotation method in a mixture of bromoform and benzene.

Systematic absences of reflexions occur for h0l:h+l=2n+1 and 0k0:k=2n+1. These uniquely determine the space group as $P2_1/n$. The asymmetric unit comprises one molecule; all the atoms are in the fourfold general positions of the set $\pm (x, y, z; \frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z)$. An alternative choice of *a* axis along the [101] direction, providing a space group symbol in the more usual $P2_1/a$ form, was not accepted because of a larger repeat period (13.590 Å) in this direction and an inconveniently large monoclinic angle (120.1°).

Structure determination

Two Patterson projections P(xy) and P(yz) were interpreted to give a set of coordinates for the copper atom in the asymmetric unit. A three-dimensional Fourier synthesis, with the phases of the diffracted beams calculated from the positions of the copper atom, yielded the locations of all the other non-hydrogen atoms. The structure was then refined by several cycles of fullmatrix least-squares refinement with isotropic temperature factors. At this point low order strong reflexions were found to have F_o consistently less than F_c , which indicated extinction. To handle this, Zachariasen's (1963) formulation of the extinction problem was adopted and the formula $F_{\rm corr} = 1/K.F_{\rm obs}(1 +$ $\beta_{2\theta}C.I_{obs}$) was employed. The resultant value of the C parameter was $0.24.10^{-3}$ for intensities on a relative scale. Prior to beginning the anisotropic refinement the scale factors, K, among the various hkl levels of the data were adjusted, again to give the best fit to the calculated structure factors (the values of K obtained were between 0.32 and 0.36). Five cycles of full-matrix leastsquares refinement with anisotropic temperature factors for all non-hydrogen atoms reduced the reliability index to $R_1 = 10.1\%$ (including unobserved reflexions) and $R_2 = 7.5\%$ (omitting unobserved reflexions). The weighting scheme adopted was: w = 1 for all reflexions whose intensities were determined with an optical densitometer, w = 0.25 for reflexions which were estimated visually (slightly above film background) and w = 0 for unobserved reflexions. Neutral-atom scattering factors were taken from International Tables for X-ray Crys-

Table 1. Final atomic coordinates $(\times 10^4)$ and thermal parameters $(\times 10^5)$

Standard deviations are in parentheses.

Thermal parameters are of the form:

				•		• • • •			
	x	у	Z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Cu(1)	1060 (1)	801 (1)	311 (2)	250 (8)	170 (10)	760 (20)	10 (8)	-30(8)	40 (13)
O(2)	- 582 (5)	740 (5)	533 (7)	294 (30)	228 (40)	874 (72)	-18(28)	29 (22)	- 147 (48)
O(3)	2608 (5)	604 (5)	-263(8)	320 (36)	305 (41)	976 (81)	8 (22)	23 (32)	135 (45)
O(4)	1430 (5)	547 (6)	2712 (8)	459 (41)	348 (45)	869 (72)	127 (36)	130 (47)	29 (43)
O(5)	2479 (7)	1023 (6)	4905 (10)	761 (55)	541 (58)	1103 (99)	-75 (44)	- 308 (60)	-28 (53)
O(6)	2131 (7)	1918 (7)	2802 (11)	1193 (73)	214 (37)	1640 (129)	- 93 (52)	228 (82)	66 (65)
O(7)	755 (6)	1230 (6)	-2013 (8)	585 (45)	248 (39)	866 (78)	61 (36)	- 79 (50)	61 (56)
O(8)	536 (7)	2514 (7)	-811 (10)	859 (61)	202 (38)	1968 (132)	- 76 (46)	356 (73)	- 315 (68)
O(9)	496 (7)	2423 (6)	- 3539 (10)	917 (60)	425 (52)	1527 (113)	132 (49)	- 135 (56)	482 (65)
N(10)	- 995 (6)	1166 (6)	1853 (8)	261 (39)	148 (37)	681 (84)	47 (34)	-18 (28)	-120 (53)
N(11)	3382 (6)	212 (6)	879 (9)	242 (38)	294 (52)	1090 (105)	68 (37)	28 (43)	15 (41)
N(12)	2034 (7)	1190 (7)	3498 (10)	350 (44)	384 (53)	900 (97)	9 (27)	-4 (32)	-124 (69)
N(13)	568 (7)	2094 (8)	-2117 (10)	301 (41)	261 (49)	1413 (121)	32 (38)	- 46 (60)	134 (83)
C(14)	- 1089 (8)	708 (8)	3270 (11)	575 (78)	219 (37)	913 (98)	4 (29)	-42 (48)	70 (64)
C(15)	- 1545 (9)	1150 (9)	4580 (13)	691 (89)	316 (47)	1157 (108)	134 (57)	187 (62)	172 (70)
C(16)	- 1872 (9)	2037 (9)	4425 (13)	437 (61)	371 (52)	1156 (111)	- 58 (36)	61 (51)	- 185 (69)
C(17)	- 1770 (8)	2496 (9)	2921 (12)	427 (58)	184 (33)	1382 (127)	45 (34)	60 (53)	-116 (65)
C(18)	- 1313 (8)	2034 (8)	1617 (11)	448 (59)	184 (31)	1270 (122)	47 (34)	25 (39)	- 248 (77)
C(19)	4309 (8)	717 (9)	1445 (11)	329 (43)	319 (45)	1297 (120)	- 34 (37)	- 62 (45)	- 209 (82)
C(20)	5156 (9)	313 (9)	2559 (13)	468 (62)	428 (59)	1523 (132)	82 (49)	- 133 (59)	-110 (66)
C(21)	5027 (9)	- 580 (9)	3024 (13)	521 (68)	339 (57)	1403 (136)	163 (61)	-237 (84)	-230 (79)
C(22)	4062 (9)	- 1081 (9)	2427 (14)	644 (85)	265 (44)	1519 (133)	211 (59)	- 167 (66)	62 (58)
C(23)	3252 (8)	-637 (9)	1327 (13)	403 (52)	233 (40)	1518 (128)	-37 (33)	-81 (52)	20 (50)

$$T = \exp\left[-\left(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl\right)\right]$$

STRUCTURE OF BIS(PYRIDINE N-OXIDE)COPPER(II) NITRATE

Table 2. Observed, Fo, and calculated Fc, structure factors

нк	L	100Fo	100Fc	нк	ι	100Fo	100Fc	нк	L	100Fo 100	c	нк	L	100Fo	100Fc	н	к	L	100Fc	100Fc	нк	L	100Fo	100Fc
0 1		13512	12731		2 4	1138	1040	11 4	0	1961 -16	 36	7 12	0	2100	-1765	13	0	3	4003	-4101		1 3	1612	-1379
0 1	2	2239	2317	0 12	2 5	627 747	411	12 4	0	00 -2	39	8 12	0	00	481	13	0	-3	00	-47	4	1 3	6517	-5854
ŏi	4	2498	-2230	0 13	2 7	00	-121	14 4	ŏ	692 6	35	10 12	ő	1226	1222	2	õ	4	8838	-8516	6	1 1	665	885
1 0	2	5 906 5 1170	995 1432	0 12	28	00 4474	277 1953	15	0	5960 -65 4079 -43	86 80	11 12	0	315	352	2	0	-4 4	6796 2010	6593 -1889	7		2371	2165
0 1	7	00	221	0 0	5 7	814	1142	3 5	ŏ.	3045 29	j4	2 13	ŏ	627	-605	4	ŏ	-4	1374	-1613	9	1 3	00	-310
0 1	5	2666	-2622 -779	0 13	s 2 3 3	4762	4739	4 5 5 5	0	40/2 -39 6815 67	7	3 13	0 0	439 2458	682 -2401	6	0	4	415 7328	-987 -6994	10	1 3	1950	1891
0 1	10	00	16	0 13	3 4	484 481	-432	65	0	3935 36	13	5 13	Ö	3985	-3731	8	Ő	4	7936	8056	12	1	2893	-2928
0 2	2	6714	6836	0 13	6	770	-893	8 5	ŏ	00 -3	3	7 13	0	00	205 481	10	0	-4	00	-352 370	13	1 4	00	-81 -35
02	3	6799 4339	-7119 4773	0 13	37 11	484 00	523 83	95	0 :	3488 -319 1585 -14	3	8 13	0	1617	1561	10	0	-4	2981	2908	2	1 4	3075	-2747
0 2	5	4133	-3987	0 14	2	2745	3111	11 5	ŏ :	2098 -188	2	10 13	ő	1395	-1379	12	ő	-4	2269	2273	4	1	00	-8232
0 2	7	4387	-4342	0 14	i 3	1438	400	12 5	0	2063 -194	a a	11 13	0	00 915	774 -1200	14	0	-4	827 2277	-949 2627	5	14	522 4707	-540 4186
0 2	8	399	679	0 14	5	1852	-1842	14 5	2	00 -0	4	2 14	Ő	853	932	i	ŏ	-5	6448	6305	7	i Z	2666	2295
0 2	10	313	-456	0 14	7	860	-8.20	26	0 3	1980 -228 5383 -498	2	3 14	0	2291 2586	-2698 -2238	3	0	5 -5	5257 5533	-5076 5661	8	14	2384	2345
03	1	7766	6502 -2902	0 15	1	2187 2247	2228 -2533	36	0 1	2469 -250	4	5 14	0	2391	2209	5	0	5	706	-693	10	1 4	1516	-1466
0 3	3	5287	4892	0 15	3	00	600	5 6	Ö .	00 62	3	7 14	0	1835	1699	5	ő	-5 5	7072 5446	-68999	12	1 4	944	-923 -327
0 3	5	2672	-2491	0 15	5	2398	-2840	66 76	0 0	5932 697 1747 174	4 9	8 14	0	944 00	781 299	7	0	-5	6108	-6051	13	14	1545	-1544
0 3	67	4955	-5273	0 15	6	1786	-2124	86	0 1	484 -102	4	10 14	ŏ	1005	824	Ś	ŏ	-5	1618	1548	2	i i	3172	-2629
0 3	8	782	-1003	0 18	2	1350	-1516	10 6	ŏ ;	2026 -196	9 6	2 15	0	1162	-1371	11	0	-5	591 4423	-743 4482	3		i 1383	-1344
03	10	558	-252 -583	0 16	3	1884 00	-2029 -220	11 6	0 1	139 98	6	3 15	0	695	-975	13	Ó	-5	892	788	5	1	1694	1534
04	1	4068	-3672	0 16	5	1384	-1692	13 6	0	379 -42	3	5 15	ŏ	1808	-1522	2	0	6	2822 3395	-3706	6 7	1 5	i 00 i 696	-379 793
ŏ 4	3	2924	-3544	0 17	2	00	-455	14 6	0 2	200 -793	6 4	6 15 7 15	0	2713 00	2556 -295	2	0	-6	2392	2315	8	1 4	2163	2152
04	4	4012 4411	-4233 -4548	0 17	3	280	-609 -1731	27	0 3	748 366	4	8 15	Ó	1647	1502	4	Ő	-6	3189	-3152	10	i i	00	212
0 4	6	3101	-3301	0 18	i	571	-624	4 7	0 4	714 437	8	1 16	0	1229	494 -1378	6	0	6 -6	00 6231	-240 -5869	11		00	-499
04	8	2516	-2494 236	0 18	2	1623	-1869 -263	57	06	659 617 627 51	0	2 16	0	00	-387	8	0	6	3374	3496	1	i a	2354	2040
04	9 1	1630	-1752	0 19	1	1347	-2014	77	0 1	012 -57	3	4 16	ŏ	00	143	10	ő	-0	593	-154 648	2	1 8	3585	-640 -3238
0 5	2	3107	-2692	0 4	ŏ	4301	-4218	97	0 2	418 -213	5	5 16	0	631 00	493 -112	10	0	-0	2393	2297	4	1 6	2164	2012
05	3	3562 2469	-3645 -2183	06	0	22188 5159	-21972 -5188	10 7 11 7	0	00 12	5	7 16	0	2425	2042	1	ŏ	7	1036	-878	6	1 2	8 80	-62
0 5	5	2373 1429	-2410	0 10	0	2099	1551	12 7	0	00 20	i	1 17	ő	690	-922	3	0	-/7	2400 3730	-2461 -3816	7	16	2618	2353
05	7	484	-1211	0 12	0	2089	2419	13 7	0 2	654 250	6	2 17	0	621	-926	3	0	-7	1739	-1650	9	iè	2141	2183
0 5	8	2219	-2119	0 16	ŏ	2777	3249	14 /	0 1	00 -22 263 154	і В.	3 17	0	00	408	5	0	7	00	-223	10	1 6	1496	-1483
0 6	1	00 4264	209 ~4011	0 18	0	1860 8640	-2147 9804	28	0 1	553 117	1	5 17	Ő	879	777	7	ŏ	7	3687	3944	i i	17	1452	-1606
6 0 4	2	7888	-7733	2 1	Ó	5452	-5612	4 8	0 2	162 186	4	1 18	0	534 695	620 -727	7	0	-7 7	00 712	313	2	7	1674	-1409
0 6	4	3754	-3889	4 1	ŏ	8084	-8341 -7755	58	03	052 276 422 126) 7	2 18	0	537	-677	,9	Ö	-7	00	177	4	i 7	620	-734
06	5	2197 2857	-2373 -3044	5 1	0	10161	-11499	78	0 3	515 -318	2	4 18	ŏ	1168	1364	0	ő	-/ 8	1223	2527 -993	5	17	2064	1812
06	8	00	156	7 1	ŏ	2527	-2492	98.	0 3	00 -62)	5 18 2 0	0 0	00 3563	117	. 2	0	8	4804	-4909	7	1 7	1006	1029
0 7	í	9716	-8538	8 I 9 I	0	2654 3956	2485 3815	10 8 11 8	0 2	913 -911 127 187	,	4 0	Ö	9238	-8398	4	ŏ	8	00	~566	8	17	2556 1937	2457 -1368
0707	2	771 7484	-720	10 1	0	821	-852	12 8	0	00 40		8 0	0	7795 00	-/411 423	4	0	~8 8	2847	2436	10	1 7	00	-12
0 7	4	00	66	12 1	ŏ	307	-534	13 8	0 2	440 77: 788 215:	 	0 0	0	1951	1995	6	Ó	-8	1703	-1497	2		2612	-2598
0 7	6	1547	-16/2	13 1	0	3076 00	-2952 313	29	0 40	065 360	i	4 0	õ	1987	-2206	8	0	~8	373	1784 -391	3 4	18 18	3408 2217	-3223
07	7	2135	-2096	15 1	Ó	782	-624	4 9	0 2	131 -230		1 0	-1	6980 10251	6239 9439	10	0	-8	00	553	5	8	1887	1855
0 7	9	799	753	2 2	ő	491	-9346 87	69	0 23	360 2548 365 -4467		3 0	1	14974	14669	i	ŏ	-9	1433	1479	7	8	2185	2566
08	2	00 3179	228 -3510	32	0	1347 4382	1185	79	0 18	310 -1490		5 0	1	6799	-6664	3	0	-9	1989 3311	-2292 3516	8 1	8	00	150
08	3	4667	5022	5 2	Ö	4847	-4437	99	0 1	00 -416		50 70	-1	18765 295	-18447 580	5	0	9	592	653	2 1	9	2752	-2624
0 8	5	1941	1874	7 2	ő	5651	-1404 5784	10 9	0 5	533 469 00 230		7 0	-1	2668	-2714	7	ŏ	-9	2091	-2042	3 1	9	00 411	152 -675
08	6 7	570 3897	-674 4003	82 92	0	5378 00	5341 408	12 9	0 26	17 2657		9 0	-1	4085	3991	2	0	10 10	1075	-1031	5 1	9	409	554
08	8	00	-375	10 2	ŏ	2066	1906	1 10	0 28	50 2774	1	10	-1	414	784	2	0	-10	1012	1195	i i	-1	3197	-2813
0 9	í	4136	-4347	12 2	0	1606 1874	-1211 1767	2 10 3 10	0 21	01 -1905	1	3 0	i	2140	-2324	2	÷	1	5042 8777	-4039 9386	21	-1 -1	1627 11705	-1128
0909	2 3	2097 4193	2434 -4768	13 2	0	432	-501	4 10	0 24	91 -2265		3 U 0 C	-1	2206 00	-2429	3 ∡	1	1	6229	5422	4 1	-1	10352	-12144
0 9	4	3498	3609	15 2	ŏ	00	455	6 10	0 15	85 -1392 97 -2044		20	2	709	-613	5	i	i	00	-214	6 1	-1	3468 5762	3257 -5586
0 9	6	3068	3239	1 3 2 3	0	8631 7006	-9355 -6554	7 10	0 55	19 -5467		4 Õ	2	408	-1364	7	1	1	5837 00	-5414	7 1	-1	3824	3516
0909	7	2247 2034	-2310	3 3	0	3825	3546	9 10	õ	00 -107		40 60	-2 2	2569 1805	-2382	8	1	1	00	177	9 1	-1	4386	4149
0 10	1	1647	1938	4 3 5 3	ő	4651	6466 -4338	10 10 .	0 17	12 1526 78 2664		6 0	-2	9705	-9088	10	i	í	716	-1/92 -751	10 1	-1	4471 00	4522 428
0 10	3	765	1538 820	63 73	0	8435 1247	8446	12 10	0 4	42 -516	-8	B 0	-2	4301	4445 1505	11	1	1	2214	-2277	12 1	-1	634	886
0 10	4	1676	1839	8 3	Ŏ	4095	3934	2 11	0 40	26 2192 26 3602	10	0 0	2	884 2391	-1141	13	1	i	õõ	-477	14 1	-1	2005	-182/ -2152
0 10	6	00	482	y 3 10 3	0	379 1391	534 -1283	3 11	0 6	29 -995	12	2 0	2	2203	-2156	14	i	2	1936 5105	-1919 4835	15 1	-1 -2	00	70
0 10	7 8	2365 00	2303 -210	11 3	0	00	-398	5 11	0 18	-1316	12	2 0 4 0	-2 2	2051 2558	2206 -2986	2	1	2	4690	-4537	2 1	-2	5919	4955
0 11	1	2779	3171	13 3	ŏ	632	-611	0 11 7 11	0 45-	4/ -4177 00 219	14	1 0	-2	2339	-2367	4	ì	2	1509	-3/2	3 1 4 1	-2 -2	6491 4096	6260 -3978
0 11	3	2154	2153	14 3 1 4	0	015 7135	-444 -7677	8 11	0 0	0 434	1	ŏ	-3	6387	5875	5 6	1	2	00 6560	-237 6291	51	-2	7053	-7793
11 0	4	1614 00	1611	24	0	2867	2898	10 11	0 6	30 622	3	50 30	3 -3	7626 1227	-7707	7	1	2	999	683	7 1	-2	00	-65
0 11	6	2443	2487	4 4	0	5042	4840	12 11	0 184	10 771 16 1744	5	50	3	2075	-1546	9	i	2	3714	-582 3359	8 1 9 1	-2 -2	4030 2752	3979 2582
0 11	7	00	235 235	54 64	0	4064 7424	3933	1 12	0 0	0 165	7	0	-3 3	5773 820	-5593 483	10 11	;	2	1320 2180	-1243	10 1	-2	00	-592
0 11 0 12	8 1	1208	1554	74	Ő	7127	7379	3 12	0 265	1961 1961 1961 1961 1961 1961 1961 1961	7	0	-3 3	4391 2850	-4111	12	1	2	2064	-2009	12 1	-2	2568	-2458
0 12	ż	5665	6184	54 94	0	2491 852	-2528 -864	4 12 5 12	0 281 0 r	1 -2438	9	ō	-3	00	148	13	i	2	2944 00	-3020 -200	13 1 14 1	-2 -2	00	-226
0 12	3	//1	-580	10 4	0	3516	-3470	6 12	0 274	9 -2479	11	0	-3	2980	-160 3038	· 1 2	1	3 3	5462 1678	-5216	15 1	-2	853	-1027
																		-				-3	4/99	-4404

2048

S. ŠĆAVNIČAR AND B. MATKOVIĆ

		Table	2 (cont.)		
H K L 100Fo 100Fc	H K L 100Fo 100Fc	H K L 100Fo 100Fc	H K L 100Fo 100Fc	H K L 100Fo 100Fc	H K L 100Fo 100Fc
3 1 -3 2379 -2580 4 1 -3 2140 1846 5 1 -3 2459 7418 6 1 -3 2459 7418 5 1 -3 2452 -1846 6 1 -3 2452 -1846 1 -3 2492 -3468 -3787 11 1 -3 1982 -1846 12 1 -3 979 -1145 1 -4 3464 -3033 -339 2 1 -4 3464 -3033 2 1 -4 3787 -32237 5 1 -4 1329 -1266 10 1 -4 2373 3297 12 1 -4 237 -3121 12 1 -5 3286 -3331 11 1 -5 3286<	11 2 3176 -3341 12 2 200 -548 13 2 21037 -1178 14 2 3 8511 6133 2 3 30436 3862 2 3 5352 -4896 6 2 3 5352 -4896 6 2 3 5352 -4896 6 2 3 5352 -4896 6 2 3 3405 -3329 7 2 3 1044 1542 11 2 3 2167 -2330 12 2 4 1289 -1004 13 2 3 2164 -2259 5 4 3125 2808 -803 6 2 4 2254 4008 12 2 4 225 2371 6 2 4	6 2 -3 6.99 744 7 2 -3 000 144 8 2 -3 000 1517 10 2 -3 000 1517 12 2 -3 000 -5286 1 2 -3 100 -5286 2 2 -4 829 -6276 2 2 -4 829 -647 4 2 -4 133 -1066 5 2 -4 1283 -1640 6 2 -4 1283 -1640 8 2 -4 1706 1644 8 2 -4 1708 102 12 -4 453 *454 13 2 -5 1104 1102 12 2 5 1102 -564 12 2 5 1201 1204	3 3 3 2280 -1837 4 3 283 347 5 3 3 283 6 3 3 2917 -1849 7 3 3 2912 -3029 11 3 3 2912 -3029 12 3 3 1068 -1064 13 3 3 1068 -1064 13 3 3 1068 -1064 14 3 4 1020 -942 4 3 4 1023 10259 2 3 4 1023 10259 2 3 4 1023 1025 13 4 103 1023 1023 13 3 4 1023 11818 13 3 1000 -5411 3 13 3 5 6155 5150 13 <td>1 3 -4 3733 -2987 2 3 -4 2844 -2919 3 3 -4 2844 -2919 3 3 -4 2923 -29260 6 3 -4 422 512 7 3 -4 422 533 9 3 -4 622 533 13 3 -4 100 -157 13 3 -4 1024 -1054 13 -5 1055 -1150 -1054 13 -5 2053 -11279 5 3 -5 2054 1922 -2076 3 -5 2054 1922 -2076 13 -5 2007 1062 -2075 13 -5 2007 1072 -2078 13 -5 2007 -2076 13 -5 2007 -27278</td> <td>2 4 4 5250 4851 3 4 4 275 234 4 4 2350 -2026 5 4 4 2059 -2026 6 4 2689 -2926 10 4 4 2069 -2926 11 4 4 1683 -1197 12 4 5 2121 -1097 1 4 5 2121 -1097 1 4 5 13409 -1244 10 4 5 1199 -1246 10 4 5 1199 -1246 11 4 5 1002 -1246 12 4 5 4000 -737 3 4 6 00 737 4 6 000 -736 4 6 000 -738 14 8 1927</td>	1 3 -4 3733 -2987 2 3 -4 2844 -2919 3 3 -4 2844 -2919 3 3 -4 2923 -29260 6 3 -4 422 512 7 3 -4 422 533 9 3 -4 622 533 13 3 -4 100 -157 13 3 -4 1024 -1054 13 -5 1055 -1150 -1054 13 -5 2053 -11279 5 3 -5 2054 1922 -2076 3 -5 2054 1922 -2076 13 -5 2007 1062 -2075 13 -5 2007 1072 -2078 13 -5 2007 -2076 13 -5 2007 -27278	2 4 4 5250 4851 3 4 4 275 234 4 4 2350 -2026 5 4 4 2059 -2026 6 4 2689 -2926 10 4 4 2069 -2926 11 4 4 1683 -1197 12 4 5 2121 -1097 1 4 5 2121 -1097 1 4 5 13409 -1244 10 4 5 1199 -1246 10 4 5 1199 -1246 11 4 5 1002 -1246 12 4 5 4000 -737 3 4 6 00 737 4 6 000 -736 4 6 000 -738 14 8 1927

STRUCTURE OF BIS(PYRIDINE N-OXIDE)COPPER(II) NITRATE

Table 2 (cont.)

н	κ	 L	100Fo	100Fc	 н	к	 L	100Fo	100Fc	н	ĸ	ι.	100Fo	100Fc	н	к	L	100Fo	100Fc		ĸ	 L	100Fo	100Fc	н	 к	 ι	100Fo	100Fc
7	4		3896	3640	5	5	5	2160	2019	2	5	-6	1174	1181	6	6	6	1064	-1061		6	-7	00	281	5	7	8	497	-531
8	4	-5 -5	3253 00	3309 -169	6 7	5 5	5 5	991 2992	-1112 3259	3	5 5	-6 -6	955 2035	-926 -1757	7	6 6	6 6	00 2746	79 -3135	5	6 6	-7 -7	1222 00	1307 -289	6 1	7 7	8 9	855 1024	-764 957
10	4	-5	00	128	8	5	5 5	2298 00	-2245 -181	5	5 5	-6 -6	2391 00	2397 -207	9 10	6	6	00	357 -102	7	6	-7 -7	934 00	849 -530	2	7	8	944	1246
12	4	-5	1901	-1951	10	5	5	1722	-1892	7	5	-6	3407	3101	1	6	7	2225	2156	9	6	-7	00	-232	ĩ	7	-1	459	-203
13	4	-5 -6	2497	-/8/ 2465	1	5	6	785	527	9	5	-6	1536	-1400	3	ő	7	2271	2407	11	6	-7	1857	-1890	3	ź	-1	6018	6186
2 3	4	-6 -6	00 1882	-465 -1743	2 3	5 5	6	2026 2831	-1982 2730	10	5	-6 -6	1846 2603	1813 -2462	4	6 6	7	1326 00	1276 -450	2	6	-8 -8	788 1362	801 -1464	4	7	-1 -1	4928 1258	5398 1297
4	4	-6	00 4592	-21	4	5 5	6	1138 00	1161 636	12	5 5	-6 -7	719 1854	-720 1825	6	6	7	00 2674	290 	3	6	-8 -8	1857 1821	-1893	6	7	-1	7047	6883
6	4	-6 -6	1138	1001	6	5	6	1137	1356	2	5	-7	2963	-2787	8	ě	7	816	1021	5	6	-8	00	462	8	7	-1	922	-1034
7 8	4	-6 -6	.00	-1145 214	8	5 5	6	00	-315	4	5	-7	441	346	2	6	8	3070	-1027 3217	7	6	-8 -8	2126	372	10	77	-1	1500 1914	-1338 -2008
9 10	4	-6 -6	1655 1466	1697 -1442	9 10	5 5	6 6	1590 1138	-1616 -1064	5	5 5	-7 -7	1882 935	-1511 818	3	6 6	8 8	00 1424	617 1413	8	6 6	-8 -8	1372 00	1272 373	11 12	777	-1 -1	589 00	-594
11	4	-6	00	-50	1	5	7	2518 00	-2486 710	7	5 5	-7 -7	818 1464	725	5	6	8	00	-488	1	6	-9	1275	-1294	13	7	-1	00	547
- 1	4	-7	721	-578	3	5	7	302	-535	9	5	-7	1376	1232	1	6	9	2027	2153	3	6	-9	2048	-2094	2	ź	-2	2614	2808
2 3	4	-/ -7	1096	-640	5	5	7	932	922	11	5	-7	00	360	23	6	9 9	1663	-510 1913	45	6	-9	00	-908 423	3	7	-2 -2	2076 837	-2412 -695
4 5	4	-7 -7	3548 1432	-3424 1181	6 7	5 5	7	1725 1367	-1739 1370	2	5 5	-8 -8	00 00	-73 79	4	6 6	9 -1	00 5687	93 -5935	6	6 7	-9 1	00 1134	-46 -928	5	7	-2 -2	4769 1262	4797 1309
6 7	4	-7	1724	-1690 352	8	5 5	7	1351 1208	-1361 -1304	3	5 5	-8 -8	2938 1452	-2842 -1644	2	6	-1	357	391	2	7	1	1555	-1596	7	7	-2	2817	2680
8	4	-7	00	-395	1	5	8	2190	2111	5	5	-8	00	260	4	6	-1	2232	-2167	4	ź	į	3210	3122	9	ź	-2	00	-53
10	4	-/ -7	2369	2002	3	5	5	2370	2609	7	5	-8	1582	1172	6	6	-1	00	-262	· 6	7	1	2565	2771	11	7	-2 -2	3700	89 -4072
1	4	-7 -8	00 1378	-110 1326	4	5	8	2370	-2714	8 9	5	-8 -8	859	-592	7	6	-1 -1	2532 2377	2232 2396	7	777	1	00 2701	-334 -2637	12	7	-2 -2	1321 00	1256
2	4	-8 -8	00	90 	6	5 5	8 8	00 1776	208 -2085	1	5 5	-9 -9	682 1248	821 -1374	9 10	6	-1 -1	2738	-2673	9	7	1	280	257	1	7	-3	00	-261
4	4	-8	755	-935	1	5	9	00	-21	3	5	-9	00	-562	11	ő	-1	2010	-1719	11	ź	i	2310	2594	3	ź	-3	6775	6810
6	4	-8	1224	1277	3	5	9	1718	1293	5	5	-9	1824	-1665	12	6	-1	1614	1575	12	7	i	00	-375	4	;	22	2273	2011 -77
7 8	4	-8 -8	1129 938	1039 982	4	5	-1	887 5205	878 -5468	6 7	5	-9 -9	545	-503	14	6 6	-1 -2	1118 1363	975 1208	1	7	2	3392 4275	-3018 4086	6 7	777	ግ ግ	5965 1747	-6092 -1952
9 10	4 ∡	-8 _9	865	977 132	2 3	5 5	-) -)	3412 5621	-3294 -5939	1	6	1	11044	-8589 787	2	6	-2	1687	-2381	3	7	2	3464	3161	8	7	-3	1489	-1451
ĩ	4	-9	920	-1008	4	5	-1	5820	6948	3	6	į	1204	1559	4	6	-2	2241	2317	5	ź	2	4650	472	10	7	22	3177	-3315
3	4	-9	00	-622	6	5	-1	5334	4996	5	6	i	4971	4605	6	6	-2 -2	8096	978 8390	7	7	2	2395 00	-2152 -246	11	7 7	-7 -3	1659 1285	1846
4	4	-9 -9	1335 630	-1261 -591	7	5. 5	-1 -1	6333 1876	6666 -1955	67	6 6	1	00 1236	-52 -1090	7 8	6	-2 -2	00 1627	11 -1616	8	7	2	00 3908	296 -4148	13	7	7	00	-93
67	4	-9 -9	2141 809	-1995 878	9 10	5 5	-1 -1	1018 4087	1001	8	6	1	878 2720	802 -2904	9	6	-2	00	-488	10	7	2	1410	1695	2	ź	4	279	-399
i	4	-10	1782	1520	11	5	-1	00	-779	10	6	i	498	634	11	6	-2	759	-712	12	7	2	710	868	4	;	-4	1606	1728
1	5	1	906 7071	-6226	13	5	-1	1692	-1413	12	õ	1	1889	-1870	12	6	-2 -2	665 691	-729 -811	13	77	2	2210 578	2468 824	5	777	4 4	4345 1244	4430 -1316
4	4 5	-5 1	4617 6073	-4901 6184	14	5 5	-1 -2	2658 6458	2754 -6394	13 14	6 6	1	1914 00	1921 61	14	6	-2	1032	996 _8747	2	7	3	1406	-1315	7	7	4	2490	2460
3	5	1	2496	1949	2	5	-2	915	-992 333	1	6	2	1123	1133	2	6	-3	992	1052	4	ź	3	4531	4335	Ŷ	7	4	1056	-970
5	5	i	2303	141	4	5	-2	1912	-1767	3	6	2	00	334	4	6	22	1572	-1223	6	;	3	1114	-1266 1017	10	777	4	1377 2846	-1447 -2933
6 7	5 5	1	3872 2341	3900 2369	5	5 5	-2 -2	5534 1312	1132	4	6	2	00	597 122	5	6	-3 -3	6978 1287	7131 1189	7	7	3	00 4053	302 -4322	12	7	4	993 537	820
8	5	1	1302	1346	7	5	-2 -2	3083 2576	3109	67	6	2	2659	2778 879	7	6	-3	3947	4126	9	ź	3	00	-390	1	2	-5	1318	-1031
10	5	į	2639	-2718	9	5	-2	2331	-2316	8	6	2	3459	-3788	9	6	-3	00	267	11	;	3	1301	1203	23	7	-5 -5	4907 00	-4903 360
12	5	-i	00	-2235 62	11	5	-2 -2	795	-753	10	6	2	8	-364 -385	10	6	-3 -3	00 3387	-08 -3500	12	77	3 4	1105 2968	873 -2608	4	7	-5 -5	1147 00	1168
13 14	5 5	1	1487 548	-1539 837	12	5 5	-2 -2	2580 876	-2560 932	11 12	6 6	2	00 2104	523 2087	12 13	6	-3 -3	00	204 396	2	7	4	1027	-745	6	7	-5	4017	4168
1	-5 5	2	5912 6134	-5937 -6379	14	5 5	-2 -3	775 3031	764 -2956	13	6	2	00 5712	-278	14	6	-3	00	-152	4	7	4	857	807	8	7	-5	1138	1236
3	5	2	5076	5277	2	5	-3	6290 790	-6582	2	6	3	2087	-1877	2	6	-4	1266	-1182	6	ź	4	2388	-2342	ıó	7	-5 -5	1388	-283 -1497
5	5	2	3430	3058	4	s	-3	4871	4732	4	6	3	623	-687	3	6	-4 -4	722 3530	460 3513	7	7	4	1107 1619	-895 -1754	11	777	-5 -5	00 828	-459 -844
6 7	5	2	2303	-1939	6	5	-3 -3	2417	2335	6	6	3	3408 881	3284 551	5 6	6 6	-4 -4	00 6168	130 6036	9 10	7	4	1077 1225	-1050	1	7	-6 -6	00 840	-392
8 9	5 5	2	3009 903	3157 -1245	7	5 5	-3 -3	1424 1176	1358 1318	7 8	6 6	3 3	2464 813	-2091 786	7	6	-4	00	536	11	7	4	831	776	3	7	-6	2191	-2255
10	5	2	00	-29	9	5	-3 -3	1946	1523	9 10	6	3	2647	-2614	9	6	-4	920	787	1	ź	5	3332	2990	5	7	م م	3705	383
12	5	2	1705	-2078	11	Š	-3	00	225	11	6	3	õõ	822	ii	ő	-4	632	-2068	2	7	5	4650 1024	4531 1032	6 7	7 7	-6 -6	1303 2084	1368 2413
1	5	3	1956	-1599	13	5	-3	1993	-1905	13	6	3	2530	2718	12	6	-4 -4	2302 591	-1876 652	4	7	5 5	1347 3329	1242 -3421	8	7	-0 -6	1217 00	-1104
2 3	5 5	3 3	3676 2559	3385 -2239	14	5 5	-3 -4	00 3431	272 -3225	1	6	4	5067 3943	-4859 3667	1	6 6	-5 -5	2428 00	-2506	6 7	7	5	1754	-1709	10	7	-6	00	-182
4	5 5	3 3	3495 882	3653	2 3	5 5	-4 -4	3412 3250	-3123 -3169	3	6	4	989 3194	-1160	3	6	-5	3391	-3555	8	7	5	1952	-2190	1	2	-7	2004	-2106
6	5	3	745	-951	4	5	-4	5570	-5503	5	6	4	2290	2367	5	6	-5	3491	3594	10	7	5	992	-100 993	23	777	-7 -7	796 1255	-690 1276
8	5	3	3543	-4001	6	5	-4	3426	3352	7	6	4	00	625	6 7	6 6	-5 -5	4132	991 4078	11	7	5 6	499 445	539 481	4	7	-7 -7	00 363	-235 319
10	5 5	3	1143	-2769 -1369	8	5 5	-4 -4	2390 1820	2145	8 9	6	4	4581	-4708 -557	8 9	6 6	-5 -5	1047 1873	-920 -1925	2	7	6	00 2464	-383 2434	6	7	-7	1322	1163
11 12	5 5	3 3	1195 3617	-1124 3658	9 10	5	-4	00 00	-281 -00	10 11	6	4. ⊿	00 00	-554	10	6	-5	1762	1534	4	7	6	1068	-1122	8	7	-7	1582	1501
13	5	3	00	-83	11	5	-4	2568	-2437	12	6	4	988	970	12	ő	-5 -5	622	-721	5	7	6	00 746	282 -487	9 10	777	-7 -7	00 1309	-558 -1186
2	5	4	1960	-2197	13	5	-4	731	-861	2	6	5	00	-297	13 1	6 6	-5 -6	551 779	-566 189	7 8	777	6 6	3177 1178	-3523 1004	1	7	-8 -8	1561	-1468
3	5 5	4	3474 4579	3452 4428	1	5 5	-5 -5	1202 2997	-2681	3 4	6 6	5 5	3526 623	3695 -842	2	6	-6 -6	2644 00	-2880	9	7	6	2141	-2291	3	7	-8	2721	-2657
5 6	5 5	4	2345 2834	2039 2822	3 4	5 5	-5 -5	840 1291	-981 1103	5	6	5	620 310	874 _619	4	6	-6	582	750	1	7	7	00	-610	5	7	-8	865	438 982
7 8	5	4	4119	-4081	.5	5	-5	2687	-2316	7	6	5	2938	-3177	6	6	-6	2938	2974	3	7	7	2882 565	-644	6 7	;	-8 -8	602 824	473 635
9	5	4	2136	-2206	7	5	-5	616	611	9	6	5	1940	-2213	7	6 6	-6 -6	00 1051	99 1042	4 5	7	7	2145 2106	2134 -2218	8 9	7 7	-8 -8	00 00	-306 258
11	5	4	11199	1324	8 9	5	-5 -5	1600	1589	10 11	6 6	5 5	1260 1397	-1472 1535	9 10	6 6	-6 -6	00 1812	261 -1757	6 7	7 7	7 7	1614 00	-1773	1	7	-9	448	-517
12	5 5	4 5	00 4546	-587 -4598	10 11	5 5	-5 -5	1813 1357	-1863 -1221	1	6 6	6 6	2080 3560	2128 3768	11	6	-6	00	-348	8	777	, 7 0	2003	-2043	3	7	-9	442	-292
2	5 5	5 5	2145 688	2119	12	5	-5	2398	-2047	3	6	6	763	-847	1	6	-7	00	-2139	2	7	8	899	961	4 5	7	-9 -9	771 525	-694 512
4	5	5	3713	3919	1	5	~6	2832	-2733	5	6	6	00	130	2	6	-7 -7	00 1250	-420 -1066	3	7 ?	8 8	1592 613	1717 -722	6	7	-9	966	1084

2050

Table 3. Interatomic distances (shorter than 3.35 Å) and bond angles

Standard errors are in parentheses. Small letters indicate symmetry transformations or cell translations:

$a: \bar{x}, \bar{y}, \bar{z}; \ b: 1-x, \bar{y}, 1-z; \ c: \frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z; \ d: \frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z; \ e: x, y, 1+z.$

(a) Distances within a dimeric molecule

	Polyhedron arour	nd the copper atom	
Cu(1)-O(2)	1.968 (5)	O(3)—O(4)	2.873(7)
Cu(1) - O(3)	1.951 (5)	O(3) - O(7)	2.653(7)
Cu(1) - O(4)	1.966 (5)	O(2a) - O(2)	2.773(6)
Cu(1) = O(7)	1.967 (5)	O(2a) - O(3)	3.110(7)
$C_{\mu}(1) = O(2a)$	2.439 (6)	O(2a) - O(4)	3.305(7)
O(2) - O(4)	2.457 (6)	O(2a) = O(4)	3.172(7)
O(2) = O(4)	2,002(0) 2,703(7)	O(2u) = O(7)	5-172 (7)
0(2) = 0(7)	2.195 (1)		
	Nitrat	e groups	
N(12) - O(4)	1.316 (9)	N(13) = O(7)	1.304 (8)
N(12) = O(5)	1.222 (9)	N(13) - O(8)	1.221 (8)
N(12) = O(6)	1.227(10)	N(13) - O(9)	1.234(0)
O(4) - O(5)	2.168(8)	O(7) = O(8)	7.234(9)
O(4) = O(6)	2.100(0) 2.108(10)	O(7) = O(8)	2.159(0)
O(5) - O(6)	2.190(10) 2.154(10)	O(8) = O(9)	2.136(9) 2.184(7)
0(3) 0(0)	2 134 (10)	0(0)-0(9)	2104 (7)
	Pyridine N-o	xide molecules	
N(10) = O(2)	1.362 (7)	N(11) = O(3)	1.361 (7)
N(10) - C(14)	1.337(10)	N(11) = O(3)	1.260 (0)
N(10) - C(18)	1.357(10)	N(11) - C(23)	1.305(9)
C(14) = C(15)	1,389 (10)	C(10) - C(20)	1.410 (12)
C(15) = C(16)	1,376 (12)	C(20) = C(20)	1.410(12)
C(16) = C(17)	1.300 (11)	C(21) - C(21)	1.407 (14)
C(10) - C(17)	1.400 (11)	C(21) - C(22)	1.407 (12)
C(17) = C(18)	1.400 (11)	C(22) = C(23)	1.402 (12)
	Other distances s	horter than 3.35 Å	
$C_{11}(1) = N(10)$	2.880 (4)	O(3) $O(6)$	2.227 (0)
$C_{u}(1) = N(10)$	2.875 (6)	O(3) = O(0)	3.27(3)
$C_{u}(1) = N(11)$ $C_{u}(1) = N(12)$	2.759 (6)	O(3) = O(12)	3.207 (7)
Cu(1) = N(12) Cu(1) = N(13)	2.755 (6)	O(4) = N(10)	3.020(7)
Cu(1) - N(13)	2.755 (0)	O(4) = O(11)	2.966 (0)
Cu(1) = O(0)	2.802(7)	O(4) = O(14)	3.062(0)
O(2) = O(3a)	2.750(7) 3.110(7)	O(4) = C(23)	3.142 (0)
O(2) = O(3u)	3.182 (0)	N(11) = N(12)	3.143 (9)
O(2) = O(3)	3.200 (8)	N(11) - N(12)	3.112 (6)
O(2) = N(13)	3.309 (0)		
(b) Distances between	dimeric molecules		
O(3a) = C(17a)	3.2017(12)	$O(9\alpha) = C(19)$	3.000 (13)
O(5) - C(21b)	3.307(12)	O(9c) - C(15)	2.212(12)
O(5) = C(17c)	3.307(10)	O(9e) - C(15)	3.312(11)
O(5) = C(17t)	3.289 (13)	O(9e) = C(10)	3.134(10)
O(0) = C(16a)	3.1209(13)	N(12c) = C(17c)	3.332 (11)
O(32) - C(102)	5124 (12)	N(13e) - C(17c)	3.202 (9)
(c) Bond angles (in de	egrees $+0.5^{\circ}$		
(,)	In nitra	te groups	
O(4) = N(12) = O(5)	117.3	O(7) N(13) O(8)	117.0
O(4) = N(12) = O(5)	110.5	O(7) = N(13) = O(6)	11/.9
O(5) = N(12) = O(0)	173.1	O(2) = N(12) = O(9)	110.4
O(3) = I(12) = O(0)	1231	O(8) = IV(13) = O(9)	125.0
	In pyridine N-	oxide molecules	
O(2) = N(10) = C(14)	119.1	O(3) = N(11) C(10)	116.0
O(2) = N(10) = C(18)	116.8	O(3) = N(11) = C(13)	120.1
C(14) = N(10) = C(18)	124.1	C(10) = N(11) - C(23)	120.1
N(10) C(14) C(15)	118.0	N(11) = C(10) = C(20)	122.9
C(14) = C(15) = C(16)	120.7	C(19) = C(20)	110.1
C(15) = C(16) = C(17)	119.9	C(20) = C(21) = C(21)	1714
C(16) = C(17) = C(18)	118.3	C(20) = C(21) = C(22) C(21) = C(22) = C(22)	121.4
C(17) = C(18) = N(10)	110.0	C(21) = C(22) = C(23) C(22) = C(23) = N(11)	171.0
C(17) = C(10) = IN(10)	1120	C(22) - C(23) - N(11)	121.9
	In a polyhedron are	ound the copper atom	
O(2) - Cu(1) - O(4)	91.8	$O(2a) = C_{11}(1) = O(2)$	77.1
O(2) = Cu(1) = O(4)	90.4	O(2a) = O(1) = O(2)	80.5
O(3) - Cu(1) - O(4)	94.3	O(2a) = Cu(1) = O(3)	07'3
O(3) = Cu(1) = O(4)	85.2	O(2a) = O(1) = O(4)	90'J 01.4
	200	O(2u) - O(1) - O(7)	21.2

Table 3 (cont.)

Angles on oxygen atoms

	-		
Cu(1)-O(2)-N(10)	118.6	Cu(1) - O(7) - N(13)	113-2
Cu(1) - O(3) - N(11)	119.4	Cu(1) - O(2) - Cu(1a)	102.9
Cu(1) - O(4) - N(12)	112.8	Cu(1a) - O(2) - N(10)	124.1

tallography (1962). The real, but not the imaginary part of the anomalous dispersion correction for the copper atom was applied. The attempt to locate hydrogen atoms by means of a difference-Fourier synthesis and to refine the calculated hydrogen positional parameters (with C-H ~ 1 Å) was unsuccessful.

Three-dimensional Fourier syntheses (Sly, Shoemaker & van den Hende, 1962) and several cycles of least-squares refinement (Busing, Martin & Levy, 1962) were carried out on the Washington State University IBM 709 computer. The least-squares refinement (Prewitt, 1964) was continued on the IBM 7040 computer at the University of Technology (Technische Hochschule), Vienna. Final refinement (Polić, 1968), the atomic distances and angles, and the mean planes (Zelenko, 1968) were computed on the Institute Ruder Bošković CAE 90.40 computer.

The final atomic coordinates and thermal parameters together with their estimated standard deviations are shown in Table 1, and the observed and calculated structure factors in Table 2. The bond lengths and angles together with other selected interatomic distances are given in Table 3 and Fig. 1.

Description and discussion of the structure

Fig. 2 represents the projection of the structure along [001]: atoms in the nitrate and pyridine *N*-oxide groups are connected by full heavy lines, as are copper-oxygen bonds; the coordination polyhedra of the copper atoms are drawn as full and broken lines. The only atoms numbered are those whose distances and angles are mentioned in Table 3.

The crystal is composed of discrete molecules which are dimeric, $[Cu(C_5H_5NO)_2(NO_3)_2]_2$. A three-dimensional arrangement is achieved by a fairly efficient molecular packing but no specific intermolecular interactions are indicated. The shortest distances correspond to normal van der Waals interactions. Dimeric species are placed in the monoclinic unit cell astride centres of symmetry at 0,0,0, and $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$, and so are composed of two centrosymmetrically related complex monomers. These two monomers are connected in such a way that two copper atoms [*e. g.* Cu(1) and Cu(1*a*) of Fig.2] are bridged by two oxygen atoms [*e.g.* O(2) and O(2*a*)] which belong to two symmetrically equivalent pyridine *N*-oxide groups. In the monomeric unit the copper

Fig.1. Bond distances and angles in pyridine N-oxide and nitrate groups.

atom is at a centre of a nearly coplanar rectangular arrangement of four oxygen atoms which belong to two nitrate and two pyridine N-oxide groups. These groups occupy trans positions to one another in the coordination sphere of the copper atom. The structural arrangement is such that one of the four oxygen atoms mentioned [O(2)] participates also in the coordination sphere of the copper atom from the centrosymmetrically related monomer, and vice versa. Thus each copper atom has a distorted tetragonal pyramidal environment of five oxygen atoms. Short and nearly coplanar bonds (mean value, 1.963 Å) are directed from the copper atom Cu(1) to four oxygen atoms: O(2) from C_5H_5NO at 1.968 Å, O(3) from C₅H₅NO at 1.951 Å, O(4) from NO₃ at 1.966 Å and O(7) from NO₃ at 1.967 Å; the fifth (long) bond (2.439 Å) is approximately perpendicular to the plane of those four oxygen atoms and directed to the bridging oxygen atom [O(2a)]. Next closest atoms (to the copper atom), on the opposite side the pyramidal apex, are two oxygen atoms [O(6) at 2.802 Å and O(8) at 2.750 Å] and two nitrogen atoms [N(12) at 2.758 Å and N(13) at 2.755 Å] from two NO₃ groups of the same monomer. Their distances from the copper atom are too great to be considered in the copper coordination sphere. This conclusion is partly supported by a significant difference between N-O bond lengths in the NO₃ groups: bonds directed to the oxygen atoms [O(4) and O(7)] from the copper polyhedron are about 0.08 Å longer than the remaining nitrogen-oxygen bonds. It follows that nitrate groups act as monodentate ligands, presumably because of a steric hindrance which prevents one of them from completing, as a bidentate ligand, an octahedral copper coordination. In spite of being structurally independent both NO₃ groups coordinate with an equal Cu-O-N angle of 113°; this value is closer to the tetrahedral (109.5°) than to the trigonal angle (120°), making *sp*³ hybridization more likely than *sp*² on the O(4) and O(7) atoms.

2053

There is no metal-metal interaction in the present structure. The closest Cu-Cu approach is 3.458 Å and this occurs within a dimeric unit; it is greater than the separation in other bridged copper complexes (Porai-Koshits & Gilinskaya, 1966; Muetterties & Schunn, 1966; Sager, Williams & Watson, 1967).

The equation of the mean plane through the copper [Cu(1)] and four oxygen atoms [O(2), O(3), O(4)] and

Fig. 2. The projection of the structure along [001].

O(7)], together with the distances of the atoms from this plane, are shown in Table 4. These data indicate a small tetrahedral distortion of a planar configuration of four oxygen atoms: the diagonal O(2)-O(3) of a quadrilateral does not intersect the second O(4)-O(7)diagonal; they are separated by 0.36 Å from one another. Table 4 also contains the equations of the mean planes through the atoms of the pyridine N-oxide and nitrate groups together with the deviations of the atoms from these planes; these deviations are so small (and the sums of the bond angles are very close to 360° or 720°) that all nitrate and pyridine N-oxide groups may be considered as planar.

The pyridine rings are twisted out of the Cu-O-N planes. The angle between the normal to the copperoxygens plane and the normal to either pyridine ring is $64 \pm 0.5^{\circ}$, and the angle between the normals to two pyridine rings is $82 \pm 0.5^{\circ}$. From the lack of coincidence of the Cu-O-N plane and the pyridine ring it may be concluded that the interaction between the p orbital of the oxygen atom and the π system of the pyridine group was of little importance in determining the mutual orientation of ligands and the equatorial plane of the copper polyhedron.

Taking into account the probable error in the positional parameters, the differences between the corresponding bond lengths within two independent pyridine *N*-oxide molecules are not significant; mean values of nitrogen-oxygen (1.361 Å), nitrogen-carbon (1.345 Å) and carbon-carbon (1.396 Å) distances are in good agreement with published data (Horrocks, Templeton & Zalkin, 1968; Sager, Williams & Watson, 1967; Tsoucaris, 1961). Both pyridine N-oxide molecules coordinate with the same Cu–O–N angle of $119\pm0.5^{\circ}$ This value is very close to 120° and may suggest, as in the structure of $Ni(C_5H_7O_2)_2(C_5H_5NO)_2$ (Horrocks et al., 1968), an sp² hybridization on oxygen, at least for a non-bridging oxygen atom; for a bridging oxygen atom [O(2)] the third weakest O(2)-Cu(1a) bond of 2.439 Å is out of the Cu(1)–O(2)–N(10) plane, with a corresponding reduction of the Cu(1)-O(2)-Cu(1a)angle to 103°.

In the crystal structure of $[(C_5H_5NO)CuCl_2]_2$ (Schafer, Morrow & Smith, 1965; Sager, Williams & Watson, 1967), which is also an oxygen bridged dimer, two Cu-O bonds are of similar strength (with lengths of 1.979 and 2.036 Å) and the distribution of 2 Cl and 2 O atoms is distorted square planar. Comparing this

with the structure of 2:1 complex copper(II) nitrate it follows that in the formation of the present structure four strong Cu-O bonds were equally distributed among four structurally independent ligands (two C₅H₅NO and two NO₃ groups) which remain at the disposal of each copper ion, while the fifth (more remote) apical position was left for bridging purposes.

Crystal structures with a 4+1 coordination of the Cu^{II} ion were reviewed by Zemann (1961) and later by Muetterties & Schunn (1966). In all of them, independent of whether the formation of a pentacoordinate structure was achieved by dimerization or not, the fifth Cu-O bond is about 0.4 Å longer than the bonds from the equatorial plane; our data are in agreement with this. In the recently determined structure of $Cu(NO_3)_2$. 2CH₃CN (Duffin, 1968), the fifth Cu-O bond is a little shorter (2.31 Å). The values obtained for short copper-oxygen bonds fall within the range of expected values of 1.9 to 2.0 Å.

The shortest distances between oxygen and carbon atoms from adjacent dimeric molecules [O(9c)-C(19) =3.10, O(8e) - C(16c) = 3.12, O(9e) - C(16) = 3.15 Å are too long, which may indicate some significant intermolecular interactions which could account for hydrogen bonding. There are no additional atoms of closer approach, although the possible positions of some of the hydrogen atoms fall within this range.

We express appreciation to Professor R.L. Carlin for the crystal of bis(pyridine N-oxide)copper(II) nitrate, Professor D. Grdenić for many fruitful discussions and for suggesting this work. Professor A. Preisinger (the University of Vienna) for his instructive help during calculations, and our colleagues for the use of their programs. We would also like to thank the Washington State University Computing Centre and the University of Vienna Computing Centre for the provision of computing time.

References

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). U. S. Atomic Energy Commission Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
- DUFFIN, B. (1968). Acta Cryst. B24, 396.
- HORROCKS, W. DEW., TEMPLETON, D. H. & ZALKIN, A. (1968). Inorg. Chem. 7, 1552.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- MUETTERTIES, E. L. & SCHUNN, R. A. (1966). Quart. Rev. 20, 245.

Table 4. Least-squares planes and deviations of atoms from the planes

x, y, z are fractional atomic coordinates.

Atoms and their distances (Å) from the plane

Cu(1), -0.0348; O(2), 0.1852; O(3), 0.1917; O(4), -0.1622; Ö(7), -0.1799

O(4), 0.0005; O(5), 0.0005; O(6), 0.0005; N(12), -0.0015O(7), 0.0054; O(8), 0.0063; O(9), 0.0062; N(13), -0.0179O(2), -0.0123; N(10), 0.0118; C(14), 0.0080; C(15), -0.0082; $\begin{array}{c} C(16), 0.0006; C(17), -0.0049; C(18), 0.0050\\ O(3), -0.0316; N(11), 0.0252; C(19), 0.0143; C(20), -0.0011;\\ C(21), -0.0201; C(22), -0.0026; C(23), 0.0158 \end{array}$

Equation of plane (fractional form)

x/1.21082 + y/0.08960 + z/0.68208 = 1x/0.01526 + y/-0.03135 + z/-0.04096 = 1x/0.10274 + y/0.53835 + z/-4.89626 = 1

x/-0.01600 + y/-0.03878 + z/-0.08116 = 1

x/0.24024 + y/-0.34687 + z/-0.24250 = 1

- POLIĆ, S. (1968). Private communication. A local version of the Busing–Martin–Levy full-matrix program (1962).
- PORAI-KOSHITS, M.A. & GILINSKAYA, U.E.A. (1966). Kristallokhimiya. Moscow: Academy of Sciences, U.S.S.R.
- PREWITT, C. T. (1964). Unpublished computer program for crystallographic least-squares refinement.
- QUAGLIANO, J. V., FUJITA, J., FRANZ, G., PHILLIPS, D. J., WALMSLEY, J. A. & TYREE, S. Y. (1961). J. Amer. Chem. Soc. 83, 3770.
- SAGER, R. S., WILLIAMS, R. J. & WATSON, W. H. (1967). Inorg. Chem. 6, 951.
- Schafer, H. L., Morrow, J. C. & Smith, H. M. (1965). J. Chem. Phys. 42, 504.
- SLY, W. G., SHOEMAKER, D. P. & VAN DEN HENDE, J. H. (1962). Esso Research and Engineering Co. Report CBRL-22M-62.
- Šćavničar, S. & Matković, B. (1967). *Chem. Comm.* p. 297.
- TSOUCARIS, G. (1961). Acta Cryst. 14, 914.
- ZACHARIASEN, W. H. (1963). Acta Cryst. 16, 1139.
- ZEMANN, J. (1961). Fortschr. Miner. 39, 59.
- ZELENKO, B. (1968). Private communication.

Acta Cryst. (1969). B25, 2055

The Crystal and Molecular Structure of the Triethylammonium Salt of Cyclic Uridine-3', 5'-Phosphate

BY CHARLES L. COULTER

Department of Anatomy, University of Chicago, Chicago, Illinois 60637, U.S.A.

(Received 27 November 1968)

The triethylammonium salt of cyclic uridine-3',5'-phosphate forms monoclinic crystals of space group $P2_1$, with $a=15\cdot51$, $b=11\cdot674$, $c=11\cdot044$ Å, $\beta=98\cdot6^\circ$; there are two molecules of the salt in the asymmetric unit. Three-dimensional diffractometer data were collected with Cu K α radiation. The structure was determined by Patterson and Fourier syntheses in conjunction with the tangent formula, and refined by block-diagonal least squares. The final R value was 5.8% for the 2712 reflections used in the refinement and 6.5% for all 2866 data.

The nucleotides pack with the pyrimidine rings nearly normal to c, arranged in hydrogen-bonded ribbons with the base planes near z=0 and $z=\frac{1}{2}$. Adjacent anions are linked with a hydrogen bond between the C(2') hydroxyl group of the ribbse and a phosphate oxygen atom.

The geometry of the molecule is in accord with previous studies of nucleotides. The C(4)–O(4) carbonyl bond on the uracil ring is bent towards N(3), as was found in most earlier studies. The torsion angles of the bases with respect to the sugars are -77° and -58° , both in the *anti* range. The ribose conformation is C(3')-endo in both anions. The conformation about the C(4')–C(5') bond is *transgauche* rather than *gauche-gauche* because of the geometrical requirements for forming the cyclic phosphate.

Introduction

Cyclic uridine-3',5'-phosphate (3',5'-UMP) is an interesting member of the class of mononucleotides. Uridine is a component of ribonucleic acid, and cyclic 2',3'-phosphate esters are intermediates in the breakdown of RNA. Cyclic 3',5'-ribonucleotides were used by Smith & Khorana (1959) in the synthesis of the specific 3',5'-phosphodiester linkage of a dinucleotide; some of these nucleotides (especially cyclic adenosine-3',5'-phosphate) are physiologically active. No detailed structure determinations have been reported for cyclic nucleotides, and this study was undertaken to elucidate the crystal structure of 3'-5'-UMP. Preliminary notes have appeared for this structure (Coulter, 1968) and for the adenosine analog, 3',5'-AMP (Watenpaugh, Dow, Jensen & Furberg, 1968). The chemical structure of 3',5'-UMP is given in Fig. 1 with the conventional numbering of the atoms.

Experimental

The triethylammonium salt of 3,'5'-UMP was prepared and crystallized from an ethanol-water solution by Dr D. H. Rammler. The crystals were tabular plates, flattened on (001). They tended to fracture easily along (001). A roughly cube-shaped crystal 0.2 mm on a side was aligned about a^* and used for the determination of cell constants and the initial data collection. To this end, the specimen was placed on a General Electric goniostat with a single-crystal orienter and scintillation counter, and irradiated with nickel-filtered copper radiation. Cell dimensions were derived by a least-squares fit of 31 careful 2θ measurements, and were found to be:

 $a = 15.51 \pm 0.01 \ b = 11.674 \pm 0.007, \ c = 11.044 \pm 0.006 \ \text{\AA}$ $\beta = 98.6^{\circ} \pm 0.1; \ \text{Cu} \ K\alpha; \lambda = 1.5418 \ \text{\AA}.$

Systematic extinctions (0k0, k = 2n + 1) suggested space